दीर्घवृत्त का समीकरण जिसकी नाभि $(-1,1)$ है जिसकी नियता $x - y + 3 = 0$ तथा जिसकी उत्केन्द्रता $\frac{1}{2}$ है , होगा
$7{x^2} + 2xy + 7{y^2} + 10x - 10y + 7 = 0$
$7{x^2} - 2xy + 7{y^2} - 10x + 10y + 7 = 0$
$7{x^2} - 2xy + 7{y^2} - 10x - 10y - 7 = 0$
$7{x^2} - 2xy + 7{y^2} + 10x + 10y - 7 = 0$
रेखा $12 x \cos \theta+5 y \sin \theta=60$ निम्न में से किस वक्र की स्पर्श रेखा है?
माना एक दीर्घवृत्त, जिसका दीर्घ-अक्ष $X$-अक्ष के अनुदिश है तथा केंद्र मूलबिन्दु पर है, के नाभिलम्ब की लंबाई $8$ है। यदि दीर्घवृत्त की नाभियों के बीच की दूरी, इसके लघु-अक्ष की लंबाई के समान हो, तो निम्न में से कौन-सा बिन्दु इस पर स्थित है ?
यदि $E$ दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ है तथा $C$ वृत्त ${x^2} + {y^2} = 9$है। $P$ व $Q$ दो बिन्दु क्रमश: $(1, 2)$ एवं $(2, 1)$ हों तो
$15$ सेमी लंबी एक छड़ $AB$ दोनों निर्देशांक्षों के बीच में इस प्रकार रखी गई है कि उसका एक सिरा $A , x-$अक्ष पर और दूसरा सिरा $B , y-$ अक्ष पर रहता है छड़ पर एक बिंदु $P (x, y)$ इस प्रकार लिया गया है कि $AP =6$ सेमी हैं दिखाइए कि $P$ का बिंदुपथ एक दीर्घवृत्त है।
निम्न में से कौन सा बिंदु, दीर्घवृत्त $\frac{ x ^{2}}{4}+\frac{ y ^{2}}{2}=1$ की किसी भी स्पर्श रेखा पर इसकी किसी एक नाभि से खींचे गए लंब के पाद के बिंदु पथ पर स्थित है ?