The equation of ellipse whose distance between the foci is equal to $8$ and distance between the directrix is $18$, is
$5{x^2} - 9{y^2} = 180$
$9{x^2} + 5{y^2} = 180$
${x^2} + 9{y^2} = 180$
$5{x^2} + 9{y^2} = 180$
The eccentricity of ellipse $(x-3)^2 + (y -4)^2 = \frac{y^2}{9} +16 ,$ is -
If the length of the latus rectum of the ellipse $x^{2}+$ $4 y^{2}+2 x+8 y-\lambda=0$ is $4$ , and $l$ is the length of its major axis, then $\lambda+l$ is equal to$......$
The length of the latus rectum of the ellipse $9{x^2} + 4{y^2} = 1$, is
Consider ellipses $E _{ k }: kx ^2+ k ^2 y ^2=1, k =1,2, \ldots$,$20$. Let $C _{ k }$ be the circle which touches the four chords joining the end points (one on minor axis and another on major axis) of the ellipse $E_k$, If $r_k$ is the radius of the circle $C _{ k }$, then the value of $\sum \limits_{ k =1}^{20} \frac{1}{ I _{ k }^2}$ is $.......$.
Number of common tangents of the ellipse $\frac{{{{\left( {x - 2} \right)}^2}}}{9} + \frac{{{{\left( {y + 2} \right)}^2}}}{4} = 1$ and the circle $x^2 + y^2 -4x + 2y + 4 = 0$ is