The locus of a variable point whose distance from $(-2, 0)$ is $\frac{2}{3}$ times its distance from the line $x = - \frac{9}{2}$, is
Ellipse
Parabola
Hyperbola
None of these
Find the equation for the ellipse that satisfies the given conditions: Foci $(\pm 3,\,0),\,\, a=4$
The position of the point $(1, 3)$ with respect to the ellipse $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$
Let a line $L$ pass through the point of intersection of the lines $b x+10 y-8=0$ and $2 x-3 y=0$, $b \in R -\left\{\frac{4}{3}\right\}$. If the line $L$ also passes through the point $(1,1)$ and touches the circle $17\left( x ^{2}+ y ^{2}\right)=16$, then the eccentricity of the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{b^{2}}=1$ is.
The eccentricity of the ellipse $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ is
The eccentricity of ellipse $(x-3)^2 + (y -4)^2 = \frac{y^2}{9} +16 ,$ is -