दीर्घवृत्त $9{x^2} + 5{y^2} = 45$ के बिन्दु $ (0, 3)$ पर अभिलम्ब का समीकरण है
$y - 3 = 0$
$y + 3 = 0$
$x$ - अक्ष
$y$ - अक्ष
वृत ${\left( {x - 1} \right)^2} + {y^2} = 1$ के व्यास को अर्द्ध लघु अक्ष लेकर तथा वृत ${x^2} + {\left( {y - 2} \right)^2} = 4$ के एक व्यास को अर्द्ध दीर्घ अक्ष लेकर एक दीर्घ वृत्त खिंचा गया। यदि दीर्घवृत्त का केन्ट्र मूलबिन्दु पर है तथा इसके अक्ष निर्देशांक अक्ष है, तो दीर्घवृत का समीकरण है
दीर्घवृत्त $\mathrm{E}: \frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ की नियता $\mathrm{x}=8$ है तथा संगत नाभि $(2,0)$ है। यदि प्रथम चतुर्थांश में $\mathrm{E}$ के बिन्दु $\mathrm{P}$ पर स्पर्श रेखा, बिन्दु $(0,4 \sqrt{3})$ से होकर जाती है तथा $\mathrm{x}$-अक्ष को $\mathrm{Q}$ पर काटती है, तो $(3 \mathrm{PQ})^2$ बराबर है _______________
एक दीर्घवृत्त बिन्दु $(-3, 1)$ से गुजरता है तथा उसकी उत्केन्द्रता $\sqrt {\frac{2}{5}} $ है। दीर्घवृत्त का समीकरण होगा
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
शीर्षों $(0,\pm 13),$ नाभियाँ $(0,±5)$