- Home
- Standard 11
- Mathematics
The equation of the circle through the points of intersection of ${x^2} + {y^2} - 1 = 0$, ${x^2} + {y^2} - 2x - 4y + 1 = 0$ and touching the line $x + 2y = 0$, is
${x^2} + {y^2} + x + 2y = 0$
${x^2} + {y^2} - x + 20 = 0$
${x^2} + {y^2} - x - 2y = 0$
$2({x^2} + {y^2}) - x - 2y = 0$
Solution
(c) Family of circles is
${x^2} + {y^2} – 2x – 4y + 1 + \lambda ({x^2} + {y^2} – 1) = 0$.
$(1 + \lambda ){x^2} + (1 + \lambda ){y^2} – 2x – 4y + (1 – \lambda ) = 0$
${x^2} + {y^2} – \frac{2}{{1 + \lambda }}x – \frac{4}{{1 + \lambda }}y + \frac{{1 – \lambda }}{{1 + \lambda }} = 0$…..(i)
Centre is $\left[ {\frac{1}{{1 + \lambda }},\;\frac{2}{{1 + \lambda }}} \right]$
and radius $ = \sqrt {{{\left( {\frac{1}{{1 + \lambda }}} \right)}^2} + {{\left( {\frac{2}{{1 + \lambda }}} \right)}^2} – \frac{{1 – \lambda }}{{1 + \lambda }}} $
$= \frac{{\sqrt {4 + {\lambda ^2}} }}{{1 + \lambda }}$.
Since it touches the line $x + 2y = 0$, hence
Radius = Perpendicular from centre to the line
$i.e.$, $\left| {\frac{{\frac{1}{{1 + \lambda }} + 2\frac{2}{{1 + \lambda }}}}{{\sqrt {{1^2} + {2^2}} }}} \right| = \frac{{\sqrt {4 + {\lambda ^2}} }}{{1 + \lambda }} $
$\Rightarrow \sqrt 5 = \sqrt {4 + {\lambda ^2}} $
$\Rightarrow \lambda \pm 1$
$ \Rightarrow \sqrt 5 = \sqrt {4 + {\lambda ^2}}$
$\Rightarrow \lambda = \pm 1$
$\lambda = – 1$ cannot be possible in case of circle. So $\lambda = 1$.
Thus, from (i) ${x^2} + {y^2} – x – 2y = 0$ is the required equation of the circle.