The equation of the circle through the points of intersection of ${x^2} + {y^2} - 1 = 0$, ${x^2} + {y^2} - 2x - 4y + 1 = 0$ and touching the line $x + 2y = 0$, is
${x^2} + {y^2} + x + 2y = 0$
${x^2} + {y^2} - x + 20 = 0$
${x^2} + {y^2} - x - 2y = 0$
$2({x^2} + {y^2}) - x - 2y = 0$
If a circle passes through the point $(a , b) \&$ cuts the circle $x^2 + y^2= K^2$ orthogonally, then the equation of the locus of its centre is :
A circle ${C_1}$ of radius $2$ touches both $x$ - axis and $y$ - axis. Another circle ${C_2}$ whose radius is greater than $2$ touches circle ${C_1}$ and both the axes. Then the radius of circle ${C_2}$ is
The centre of the circle, which cuts orthogonally each of the three circles ${x^2} + {y^2} + 2x + 17y + 4 = 0,$ ${x^2} + {y^2} + 7x + 6y + 11 = 0,$ ${x^2} + {y^2} - x + 22y + 3 = 0$ is
The minimum distance between any two points $P _{1}$ and $P _{2}$ while considering point $P _{1}$ on one circle and point $P _{2}$ on the other circle for the given circles' equations
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-24 x-10 y+160=0$ is .........
Choose the correct statement about two circles whose equations are given below
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-22 x-10 y+137=0$