उस वृत्त का समीकरण जिसकी त्रिज्या $5$ है तथा जो वृत्त ${x^2} + {y^2} - 2x - 4y - 20 = 0$ को बिन्दु $(5, 5)$ पर बाह्यत: स्पर्श करता है, होगा
${x^2} + {y^2} - 18x - 16y - 120 = 0$
${x^2} + {y^2} - 18x - 16y + 120 = 0$
${x^2} + {y^2} + 18x + 16y - 120 = 0$
${x^2} + {y^2} + 18x - 16y + 120 = 0$
एक वृत्त जिसका केन्द्र $(2,3)$ है तथा त्रिज्या $4$ है, रेखा $\mathrm{x}+\mathrm{y}=3$ को बिंदुओं $\mathrm{P}$ तथा $\mathrm{Q}$ पर काटता है। यदि $P$ तथा $Q$ पर स्पर्श रेखाएँ बिंदु $S(\alpha, \beta)$ पर मिलती हैं तो $4 \alpha-7 \beta$ बराबर है___________.
$x = 7$ वृत्त ${x^2} + {y^2} - 4x - 6y - 12 = 0$ को स्पर्श करती है तब एक स्पर्श बिन्दु के निर्देशांक हैं
यदि ${c^2} > {a^2}(1 + {m^2})$ तो रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} = {a^2}$ को काटेगी
उस बिन्दु के निर्देशांक जिससे वृत्तों ${x^2} + {y^2} = 1$, ${x^2} + {y^2} + 8x + 15 = 0$ व ${x^2} + {y^2} + 10y + 24 = 0$ पर खींची गयी स्पर्श रेखाओं की लम्बाइयाँ बराबर हैं, है
वृत्त ${x^2} + {y^2} = 5$ के बिन्दु $(1,-2) $ पर स्पर्श रेखा वृत्त ${x^2} + {y^2} - 8x + 6y + 20 = 0$ को