यदि वृत्त ${x^2} + {y^2} + 6x + 6y = 2$ के बिन्दु $P$ पर स्पर्श रेखा, सरल रेखा $5x - 2y + 6 = 0$ को $y$ - अक्ष पर बिन्दु $Q$ पर मिलती है, तो $PQ$ की लम्बाई है

  • [IIT 2002]
  • A

    $4$

  • B

    $2\sqrt 5 $

  • C

    $5$

  • D

    $3\sqrt 5 $

Similar Questions

वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $(a\cos \alpha ,a\sin \alpha )$ पर स्पर्श रेखा की प्रवणता है

वृत्त का समीकरण, जिसका केन्द्र $(1, 2)$ है तथा स्पर्श रेखा $x + y - 5 = 0$ हैं, है

माना $\mathrm{O}$ मूलबिन्दु है तथा $\mathrm{OP}$ और $\mathrm{OQ}$ वृत्त $x^2+y^2-6 x+4 y+8=0$ के बिन्दुओं $P$ तथा $Q$ पर स्पर्श रेखाएं हैं। यदि त्रिभुज $\mathrm{OPQ}$ का परिवृत्त, बिन्दु $\left(\alpha, \frac{1}{2}\right)$ से होकर जाती है, तो $\alpha$ का एक मान है

  • [JEE MAIN 2023]

मूल बिन्दु से वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ पर खींची गयी दो स्पर्श रेखाएँ परस्पर लम्बवत् होंगी, यदि

यदि बिन्दु $(f,g)$ से वृत्तों ${x^2} + {y^2} = 6$ तथा ${x^2} + {y^2} + 3x + 3y = 0$ पर खींची गयी स्पर्श रेखाओं की लम्बाइयों का अनुपात $2 : 1$ हो, तो