यदि वृत्त $S \equiv {x^2} + {y^2} + 2gx + 2fy + c = 0$ द्वारा बिन्दु $P({x_1},{y_1})$ पर अन्तरित कोण $\theta $ हो, तो
$\cot \theta = \frac{{\sqrt {{s_1}} }}{{\sqrt {{g^2} + {f^2} - c} }}$
$\cot \frac{\theta }{2} = \frac{{\sqrt {{s_1}} }}{{\sqrt {{g^2} + {f^2} - c} }}$
$\tan \theta = \frac{{2\sqrt {{g^2} + {f^2} - c} }}{{\sqrt {{s_1}} }}$
इनमें से कोई नहीं
बिन्दु $(4, 3)$ से वृत्त ${x^2} + {y^2} = 9$ पर स्पर्श रेखाएँ खींची गयी हैं। इन स्पर्श रेखाओं और इनके स्पर्श बिन्दुओं को मिलाने वाली रेखा से बने त्रिभुज का क्षेत्रफल है
यदि बिन्दु $(5, 3)$ से वृत्त ${x^2} + {y^2} + 2x + ky + 17 = 0$ पर खींची गई स्पर्श रेखा की लम्बाई $7$ हो, तो $k$ =
वृत्त ${x^2} + {y^2} = 13$ के उन बिन्दुओं पर जिनके भुज $2$ हैं, स्पर्श रेखाओं के समीकरण होंगे
रेखा $y = mx + c$ उस वृत्त की, जिसकी त्रिज्या $r$ तथा केन्द्र $(a, b)$ है, अभिलम्ब होगी यदि
रेखा $y = 2x + c$ को वृत्त ${x^2} + {y^2} = 16$ की स्पर्श रेखा होने के लिए $c$ का मान है