समकोणिक अतिपरवलय की नियताओं के मध्य दूरी $10$ इकाई है, तब इसकी नाभियों के मध्य दूरी है
$10\sqrt 2 $
$5$
$5\sqrt 2 $
$20$
अतिपरवलय $16{x^2} - 9{y^2} = 144$ पर कोई बिन्दु $P$ है। यदि ${S_1}$ तथा ${S_2}$ इसकी नाभियाँ हों, तो $P{S_1} - P{S_2} = $
अतिपरवलय $\frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$ जिसकी उत्केन्द्रता $\frac{\sqrt{5}}{2}$ है, पर एक बिन्दु $P (-2 \sqrt{6}, \sqrt{3})$ है। यदि इस अतिपरवलय के बिन्दु $P$ पर स्पर्श रेखा तथा अभिलंब अतिपरवलय के संयुग्मी अक्ष को क्रमशः बिन्दुओं $Q$ तथा $R$ पर काटते है, तो $QR$ बराबर है -
अतिपरवलय $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{4} = 1$ के नियामक वृत्त का समीकरण है
यदि अतिपरवलय $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1$ के बिन्दु $(2\sec \phi ,\;3\tan \phi )$ पर स्पर्श $3x - y + 4 = 0$ के समान्तर है, तब $f$ का मान ............. $^o$ है
यदि अतिपरवलय की नियता $x + 2y = 1$, नाभि $(2, 1)$ तथा उत्केन्द्रता $2$ हो तो उसका समीकरण होगा