अतिपरवलय $3{x^2} - 4{y^2} = 12$ की उन स्पर्शियों के समीकरण जो अक्षों से बराबर अन्त: खण्ड काटती हैं, है
$y + x = \pm 1$
$y - x = \pm 1$
$3x + 4y = \pm 1$
$3x - 4y = \pm 1$
उस अतिपरवलय का समीकरण ज्ञात कीजिए जिसकी नाभियाँ $(0,±12)$ और नाभिलंब जीवा की लंबाई $36$ है।
यदि एक अतिपरवलय की नाभियाँ, दीर्घवृत्त $\frac{x^2}{9}+\frac{y^2}{25}=1$ की नाभियों के समान हैं तथा अतिपरवलय की उत्केन्द्रता, दीर्घवृत्त की उत्केन्द्रता का $\frac{15}{8}$ गुना है, तो अतिपरवलय पर बिन्दु $\left(\sqrt{2}, \frac{14}{3} \sqrt{\frac{2}{5}}\right)$ की छोटी नाभीय दूरी बराबर है
वक्र ${x^2} - {y^2} = 1$ की उत्केन्द्रता है
एक वर्ग $ABCD$ के सभी शीर्ष वक्र $x ^{2} y ^{2}=1$ पर हैं। इसकी भुजाओं के मध्यबिंदु भी इसी वक्र पर हैं तो $ABCD$ के क्षेत्रफल का वर्ग है ............ |
सरल रेखा $lx + my = n$ का अतिपरवलय ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ पर अभिलम्ब होने का प्रतिबन्ध होगा