दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के बिन्दु $(a\cos \theta ,\;b\sin \theta )$ पर अभिलम्ब का समीकरण होगा

  • A

    $\frac{{ax}}{{\sin \theta }} - \frac{{by}}{{\cos \theta }} = {a^2} - {b^2}$

  • B

    $\frac{{ax}}{{\sin \theta }} - \frac{{by}}{{\cos \theta }} = {a^2} + {b^2}$

  • C

    $\frac{{ax}}{{\cos \theta }} - \frac{{by}}{{\sin \theta }} = {a^2} - {b^2}$

  • D

    $\frac{{ax}}{{\cos \theta }} - \frac{{by}}{{\sin \theta }} = {a^2} + {b^2}$

Similar Questions

माना एक दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ की नाभियाँ तथा नाभिलंब जीवा की लंबाई क्रमशः $( \pm 5,0)$ तथा $\sqrt{50}$ हैं तो अतिपरवलय $\frac{\mathrm{x}^2}{\mathrm{~b}^2}-\frac{\mathrm{y}^2}{\mathrm{a}^2 \mathrm{~b}^2}=1$ की उत्केन्द्रता का वर्ग बराबर है ..............

  • [JEE MAIN 2024]

प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए

शीर्षों $(0,\pm 13),$ नाभियाँ $(0,±5)$

यदि दीर्घवत्त, $x ^{2}+4 y ^{2}=4$ की एक स्पर्शरेखा, इसके दीर्घ अक्ष के छोरों पर खींची गई स्पर्श रेखाओं को बिन्दुओं $B$ तथा $C$ पर मिलती है, तो $BC$ को व्यास मान कर खींचा गया वत्त निम्न में से किस बिन्दु से होकर जाता है ?

  • [JEE MAIN 2021]

दीर्घवृत्त  $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ की नाभिलम्ब जीवा है

प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए

दीर्घ अक्ष की लंबाई $16,$ नाभियाँ $(0,\pm 6) .$