प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए

शीर्षों $(\pm 5,0),$ नाभियाँ $(±4,0)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Vertices $(\pm 5,\,0),$ foci $(±4,\,0)$

Here, the vertices are on the $x-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semi- major axis.

Accordingly, $a=5$ and $c=4$

It is known that $a^{2}=b^{2}+c^{2}$

$\therefore 5^{2}=b^{2}+4^{2}$

$\Rightarrow 25=b^{2}+16$

$\Rightarrow b^{2}=25-16$

$\Rightarrow b=\sqrt{9}=3$

Thus, the equation of the ellipse is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$ or $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Similar Questions

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$4 x ^{2}+9 y ^{2}=36$

यदि दीर्घवृत्त  $\frac{{{x^2}}}{{14}} + \frac{{{y^2}}}{5} = 1$ के बिन्दु $P(\theta )$ पर खींचे गये अभिलम्ब इसे पुन: $Q(2\theta )$ पर प्रतिच्छेद करते हैं, तो $\cos \theta $ बराबर है  

माना $E _{1}: \frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1, a > b$ एक दीर्घवत्त है। माना $E _{2}$ एक और दीर्घवत्त है, जो $E _{1}$ के दीर्घ अक्ष के छोरों को स्पर्श करता है तथा $E_{2}$ की नाभियोँ, $E_{1}$ के लघु अक्ष के छोरों पर है। यदि $E _{1}$ तथा $E _{2}$ की उत्केन्द्रता बराबर है, तो उसका मान है -

  • [JEE MAIN 2021]

दीर्घवृत्त $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ की उत्केन्द्रता है  

दीर्घवृत्त की जीवा के ध्रुवों का बिन्दुपथ होगा