प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
शीर्षों $(\pm 5,0),$ नाभियाँ $(±4,0)$
Vertices $(\pm 5,\,0),$ foci $(±4,\,0)$
Here, the vertices are on the $x-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semi- major axis.
Accordingly, $a=5$ and $c=4$
It is known that $a^{2}=b^{2}+c^{2}$
$\therefore 5^{2}=b^{2}+4^{2}$
$\Rightarrow 25=b^{2}+16$
$\Rightarrow b^{2}=25-16$
$\Rightarrow b=\sqrt{9}=3$
Thus, the equation of the ellipse is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$ or $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
यदि दीर्घवृत्त का नाभिलम्ब $10$ तथा लघु अक्ष नाभियों के बीच की दूरी के बराबर हो, तो दीर्घवृत्त का समीकरण है
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष के अंत्य बिंदु $(\pm 3,0),$ लघु अक्ष के अंत्य बिंदु $(0,±2)$
दीर्घवृत्त $\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{28}} = 1$ की उत्केन्द्रता है
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के केन्द्र से इसकी किसी स्पर्श रेखा पर डाले गये लम्ब के पाद का बिन्दुपथ है
वृत्त की त्रिज्या जिसका केन्द्र $(0,3)$ व जो दीर्घवृत्त $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ की नाभि से गुजरता है, है