- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
एक अतिपरवलय $4 x^{2}-y^{2}=36$ के बिंदुओ $P$ तथा $Q$ पर स्यर्श रेखाएँ खींची जाती है। यदि यह स्पर्शरखाएँ बिंदु $T(0,3)$ पर काटती हैं, तो $\Delta P T Q$ का क्षेत्रफल (वर्ग इकाइयों में) है
A
$54\sqrt 3 $
B
$60\sqrt 3 $
C
$36\sqrt 5 $
D
$45$$\sqrt 5 $
(JEE MAIN-2018)
Solution

(4) Here equation of hyperbola is $\frac{{{x^2}}}{9} – \frac{{{y^2}}}{{36}} = 1$
Now, $PQ$ is the chord of contant
$\therefore $ Equation of $PQ$ is $\,:\frac{{x\left( 0 \right)}}{9} – \frac{{y\left( 3 \right)}}{{36}} = 1$
$ \Rightarrow y = – 12$
$\therefore $ Area of $\Delta PQT = \frac{1}{2} \times TR \times PQ$
$\because $ $P \equiv \left( {3\sqrt 5 , – 12} \right)\,\,\,\,\,\,\therefore TR = 3 + 12 = 15$
$\therefore $ Area of $\Delta PQT = \frac{1}{2} \times 15 \times 6\sqrt 5 = 45\sqrt 5 $ sq.units
Standard 11
Mathematics