अतिपरवलय $\frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$ जिसकी उत्केन्द्रता $\frac{\sqrt{5}}{2}$ है, पर एक बिन्दु $P (-2 \sqrt{6}, \sqrt{3})$ है। यदि इस अतिपरवलय के बिन्दु $P$ पर स्पर्श रेखा तथा अभिलंब अतिपरवलय के संयुग्मी अक्ष को क्रमशः बिन्दुओं $Q$ तथा $R$ पर काटते है, तो $QR$ बराबर है -
$4 \sqrt{3}$
$6$
$6 \sqrt{3}$
$3 \sqrt{6}$
यदि अतिपरवलय $16 x ^{2}-9 y ^{2}=144$ की नियता (directrix) $5 x+9=0$ है, तो इसका संगत नाभिकेन्द्र है
अतिपरवलय ${x^2} - 2{y^2} - 2 = 0$ पर किसी बिन्दु से अनन्त स्पर्शियों पर खींचे गये लम्बों की लम्बाईयों का गुणनफल होगा
उस अतिपरवलय का समीकरण जिसकी अक्ष, निर्देशाक्षों के सापेक्ष हों एवं जिसकी नाभियों के बीच की दूरी $16$ तथा उत्केन्द्रता $\sqrt 2 $ हो, है
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
नाभियाँ $(\pm 3 \sqrt{5}, 0),$ नाभिलंब जीवा की लंबाई $8$ है।
अतिपरवलय $\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = 1$ की स्पर्श रेखा, जो रेखा $y - x + 5 = 0$, के समान्तर है, का समीकरण है