समीकरण ${e^x} - x - 1 = 0$ के होंगे
केवल एक वास्तविक मूल $x = 0$
कम से कम दो वास्तविक मूल
ठीक दो वास्तविक मूल
अनन्त वास्तविक मूल
निम्नलिखित गुणों वाली एक तीन अंकों वाली संख्या पर विचार करे :
$I$. यदि इसके इकाई $(unit)$ और दहाई $(tens)$ अंकों को आपस में बदल दिया जाए तब संख्या $36$ से बढ़ जाएगी;
$II$. यदि इसके इकाई और सीवें $(hundredth)$ अंकों को बदल दिया जाए तो संख्या $198$ से घट जाएगी;
अब मान ले कि दहाई अंक तथा सौवें अंक को आपस में अदल - बदल दिया जाए, तो संख्या
समीकरण $\mathrm{x}^2-4 \mathrm{x}+[\mathrm{x}]+3=\mathrm{x}[\mathrm{x}]$, जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक फलन है,
यदि बहुपद $P(x)$ का समुच्चय S है जिसकी घात $ \le 2$ हो, जबकि $P(0) = 0,$$P(1) = 1$,$P'(x) > 0,{\rm{ }}\forall x \in (0,\,1)$, तब
समीकरण $e ^{4 x }+4 e ^{3 x }-58 e ^{2 x }+4 e ^{ x }+1=0$ के वास्तविक हलों की संख्या है $............$
समीकरण $\log ( - 2x)$ $ = 2\log (x + 1)$ के मूलों की संख्या होगी