समीकरण ${e^x} - x - 1 = 0$ के होंगे
केवल एक वास्तविक मूल $x = 0$
कम से कम दो वास्तविक मूल
ठीक दो वास्तविक मूल
अनन्त वास्तविक मूल
यदि $\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$ तो
दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y=a, \frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ अंतराल $[0,2014]$ में कितनी प्राकृत संख्याओं $a$ के लिए दिये गए समीकरण युग्म के निश्चित रूप से परिमित अनेक हल हैं।
समीकरण ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$के वास्तविक मूलों की संख्या है
यदि समीकरण ${x^3} + px + q = 0$ के मूल $\alpha ,\beta $ और $\gamma $ हों तो ${\alpha ^3} + {\beta ^3} + {\gamma ^3}$ का मान होगा
यदि द्विघाती समीकरण, $x^{2}+x \sin \theta-2 \sin \theta=0, \theta \in\left(0, \frac{\pi}{2}\right) \text {, }$ के मूल $\alpha$ तथा $\beta$ हैं, तो $\frac{\alpha^{12}+\beta^{12}}{\left(\alpha^{-12}+\beta^{-12}\right)(\alpha-\beta)^{24}}$ बराबर हैं