Gujarati
10-1.Circle and System of Circles
medium

The equations of the normals to the circle ${x^2} + {y^2} - 8x - 2y + 12 = 0$ at the points whose ordinate is $-1,$ will be

A

$2x - y - 7 = 0,\,2x + y - 9 = 0$

B

$2x + y + 7 = 0,\,2x + y + 9 = 0$

C

$2x + y - 7 = 0,\,\,2x + y + 9 = 0$

D

$2x - y + 7 = 0,\,2x - y + 9 = 0$

Solution

(a) The abscissa of point is found by substituting the ordinates and solving for abscissa.

$ \Rightarrow {x^2} – 8x + 15 = 0$

$ \Rightarrow x = \frac{{8 \pm \sqrt {64 – 60} }}{2} $

$= \frac{{8 \pm 2}}{2} = 5$ or $3$

i.e., points are $(5,\; – 1)$ and $(3, -1)$.

Normal is given by, $\frac{{x – 5}}{{5 – 4}} = \frac{{y + 1}}{{ – 1 – 1}} $

$\Rightarrow 2x + y – 9 = 0$

and $\frac{{x – 3}}{{3 – 4}} = \frac{{y + 1}}{{ – 1 – 1}}$

$\Rightarrow 2x – y – 7 = 0$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.