मूल बिन्दु से वृत्त ${x^2} + {y^2} - 2rx - 2hy + {h^2} = 0$ पर खींची गयी स्पर्श रेखाओं के समीकरण हैं

  • [IIT 1988]
  • A

    $x = 0,y = 0$

  • B

    $({h^2} - {r^2})x - 2rhy = 0,x = 0$

  • C

    $y = 0,x = 4$

  • D

    $({h^2} - {r^2})x + 2rhy = 0,x = 0$

Similar Questions

यदि सरल रेखा $ax + by = 2;a,b \ne 0$ वृत्त ${x^2} + {y^2} - 2x = 3$ को स्पर्श करती है तथा वृत्त ${x^2} + {y^2} - 4y = 6$ पर अभिलम्ब है, तब $a$ तथा $b$ के मान क्रमश: हैं

माना वत्त $x ^{2}+ y ^{2}=25$ के बिंदु $R (3,4)$ पर स्पर्श रेखा $x$-अक्ष तथा $y$-अक्ष को क्रमशः बिंदुओं $P$ तथा $Q$ पर मिलती है। यदि मूलबिंदु $O$ से होकर जाने वाले वत्त, जिसका केन्द्र त्रिभुज $OPQ$ का अंतः केन्द्र है, की त्रिज्या $r$ है, तो $r^{2}$ बराबर है

  • [JEE MAIN 2021]

रेखा $ax + by + c = 0$ वृत्त ${x^2} + {y^2} = {r^2}$ पर अभिलम्ब है। रेखा $ax + by + c = 0$ द्वारा वृत्त पर काटे गये अन्त:खण्ड की लम्बाई है

रेखा $x\cos \alpha  + y\sin \alpha  = p$, वृत्त ${x^2} + {y^2} - 2ax\cos \alpha  - 2ay\sin \alpha  = 0$ की स्पर्श रेखा होगी, यदि $p = $

बिन्दु $(3, -4)$ से वृत्त ${x^2} + {y^2} - 4x - 6y + 3 = 0$ पर खींची स्पर्श रेखा की लम्बाई का वर्ग है