The expression $\frac{{{{\tan }^2}20^\circ  - {{\sin }^2}20^\circ }}{{{{\tan }^2}20^\circ \,\cdot\,{{\sin }^2}20^\circ }}$ simplifies to

  • A

    a rational which is not integral

  • B

    a surd

  • C

    a natural which is prime

  • D

    a natural which is not composite

Similar Questions

Prove that $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$

Value of $\frac{{4\sin {9^o}\sin {{21}^o}\sin {{39}^o}\sin {{51}^o}\sin {{69}^o}\sin {{81}^o}}}{{\sin {{54}^o}}}$ is equal to

If $\cos A = \cos B\,\,\cos C$and $A + B + C = \pi ,$ then the value of $\cot \,B\,\cot \,C$ is

If $A$ and $B$ are complimentary angles, then :

If $\alpha $ is a root of $25{\cos ^2}\theta + 5\cos \theta - 12 = 0$, $\pi /2 < \alpha < \pi $, then $\sin 2\alpha $ is equal to