व्यंजक $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$, $x$ के निम्न मान के लिए धनात्मक मान रखता है

  • A

    $0 \le x \le \frac{\pi }{2}$

  • B

    $0 \le x \le \pi $

  • C

    सभी $x \in R$ के लिये

  • D

    $x \ge 0$

Similar Questions

समीकरण $\sin x + \sin y + \sin z =  - 3$, $0 \le x \le 2\pi ,$ $0 \le y \le 2\pi ,$  $0 \le z \le 2\pi $ के लिए रखता है  

मानाकि $\theta, \phi \in[0,2 \pi]$ इस प्रकार है कि $2 \cos \theta(1-\sin \phi)=\sin ^2 \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \phi-1, \tan (2 \pi-\theta) > 0$ और $-1 < \sin \theta<-\frac{\sqrt{3}}{2}$. तब $\phi$ निम्न में से किसको संतुष्ट नहीं कर सकता ?

$(A)$ $0<\phi<\frac{\pi}{2}$ $(B)$ $\frac{\pi}{2}<\phi<\frac{4 \pi}{3}$

$(C)$ $\frac{4 \pi}{3}<\phi<\frac{3 \pi}{2}$ $(D)$ $\frac{3 \pi}{2}<\phi<2 \pi$

  • [IIT 2012]

$\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$ को हल कीजिए

त्रिभुज $P Q R$ में, $P$ वृहत्तम कोण है तथा $\cos P=\frac{1}{3}$ । इसके अतिरिक्त त्रिभुज का अन्तःवृत्त भुजाओं $P Q, Q R$ तथा $R P$ को क्रमशः $N, L$ तथा $M$ पर इस तरह स्पर्श करता है कि $P N, Q L$ तथा $R M$ की लम्बाईयाँ क्रमागत सम पूर्ण संख्याएं है। तब त्रिभुज की भुजा (भुजाओं) की सम्भावित लम्बाई (लम्बाईयाँ) है (हैं)

$(A)$ $16$ $(B)$ $18$ $(C)$ $24$ $(D)$ $22$

  • [IIT 2013]

$x$ का वह मान, जिसके लिए ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ अस्तित्व में है, होगा