क्रमागत पूर्णांकों (Consecutive integers) की समान्तर श्रेणी का प्रथम पद  ${p^2} + 1$ है। इस श्रेणी के $(2p + 1)$ पदों का योग है

  • A

    ${(p + 1)^2}$

  • B

    ${(p + 1)^3}$

  • C

    $(2p + 1){(p + 1)^2}$

  • D

    ${p^3} + {(p + 1)^3}$

Similar Questions

यदि $2x,\;x + 8,\;3x + 1$ समान्तर श्रेणी में हैं, तो $x$ का मान होगा

मान लें कि प्राकृत संख्याएँ $a, b, c, d, e$ एक अंकगणितीय श्रेढ़ी $(arithmetic\,\,progression)$ में इस प्रकार हैं कि $a+b+c+d+e$ एक पूर्णांक का घन $(cube)$ है तथा $b+c+d$ एक पूर्णांक का वर्ग है। तब $c$ संख्या में न्यूनतम अंक का मान है

  • [KVPY 2013]

यदि एक समान्तर श्रेणी का $10^{\text {th }}$ वां पद $\frac{1}{20}$ है तथा इसका $20^{\text {th }}$ वां पद $\frac{1}{10}$ है, तो इसके प्रथम $200$ पदों का योग है

  • [JEE MAIN 2020]

$250$ से $1000 $ तक की संख्यायें जो $3$ से विभाजित हों, का योग होगा

माना $\alpha, \beta$ तथा $\gamma$ तीन धनात्मक वास्तविक संख्याएं हैं। माना $f ( x )=\alpha x ^5+\beta x ^3+\gamma x , x \in R$ तथा $g : R \rightarrow R$ इस प्रकार हैं कि सभी $x \in R$ के लिए $g ( f ( x ))= x$ है। यदि $a _1, a _2, a _3, \ldots, a _n$ एक संमातर श्रेढ़ी में है, जिनका माध्य शुन्य है, तो $f \left( g \left(\frac{1}{ n } \sum \limits_{ i =1}^{ n } f \left( a _{ i }\right)\right)\right)$ का मान बराबर है :

  • [JEE MAIN 2022]