The first term of an infinite geometric progression is $x$ and its sum is $5$. Then
$0 \le x \le 10$
$0 < x < 10$
$ - 10 < x < 0$
$x > 10$
If $2(y - a)$ is the $H.M.$ between $y - x$ and $y - z$, then $x - a,\;y - a,\;z - a$ are in
If $a,\;b,\;c$ are in $A.P.$, then ${10^{ax + 10}},\;{10^{bx + 10}},\;{10^{cx + 10}}$ will be in
Let $\alpha$ and $\beta$ be the roots of $x^{2}-3 x+p=0$ and $\gamma$ and $\delta$ be the roots of $x^{2}-6 x+q=0 .$ If $\alpha$ $\beta, \gamma, \delta$ form a geometric progression. Then ratio $(2 q+p):(2 q-p)$ is
If ${G_1}$ and ${G_2}$ are two geometric means and $A$ the arithmetic mean inserted between two numbers, then the value of $\frac{{G_1^2}}{{{G_2}}} + \frac{{G_2^2}}{{{G_1}}}$is
If the sum of the $n$ terms of $G.P.$ is $S$ product is $P$ and sum of their inverse is $R$, than ${P^2}$ is equal to