ધોરણ $11$ ના એક સેક્શનમાં વિદ્યાર્થીઓની ઊંચાઈ અને વજન માટે નીચે પ્રમાણે માહિતી મળી છે : શું આપડે કહી શકીએ કે વજનનું વિચરણ ઊંચાઈના વિચરણ કરતાં વધુ છે ?

 

ઊંચાઈ

વજન

મધ્યક

$162.6\,cm$ $52.36\,kg$
વિચરણ $127.69\,c{m^2}$ $23.1361\,k{g^2}$
 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

To compare the variability, we have to calculate their coefficients of variation.

Given $\quad$ Variance of height $=127.69 cm ^{2}$

Therefore Standard deviation of height $=\sqrt{127.69} cm =11.3 cm$

Also $\quad$ Variance of weight $=23.1361 kg ^{2}$

Therefore Standard deviation of weight $=\sqrt{23.1361} kg =4.81 kg$

Now, the coefficient of variations $(C.V.)$ are given by

$(C.V.)$ in heights $=\frac{\text { Standard } \text { Deviation }}{\text { Mean }} \times 100$

$=\frac{11.3}{162.6} \times 100=6.95$

and $\quad$ $(C.V.)$ in weights $=\frac{4.81}{52.36} \times 100=9.18$

Clearly $C.V.$ in weights is greater than the $C.V.$ in heights

Therefore, we can say that weights show more variability than heights

Similar Questions

આઠ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $9$ અને $9.25$ છે, જો આમાંથી છ અવલોકનો $6, 7, 10, 12, 12$ અને $13$ હોય, તો બાકીનાં બે અવલોકનો શોધો. 

જ્યારે $10$ અવલોકન લખવામાં આવે ત્યારે એક વિધ્યાર્થી $25$ ની બદલે $52$ લખી નાખે છે  અને તેને મધ્યક અને વિચરણ અનુક્રમે $45$ અને $16$ મળે છે તો સાચો મધ્યક અને વિચરણ મેળવો 

અહી $x _1, x _2, \ldots \ldots x _{10}$ દસ અવલોકન આપેલ છે કે જેથી $\sum_{i=1}^{10}\left(x_i-2\right)=30, \sum_{i=1}^{10}\left(x_i-\beta\right)^2=98, \beta>2$ અને તેઓના વિચરણ $\frac{4}{5}$ થાય. જો $\mu$ અને $\sigma^2$ એ અનુક્રમે  $2\left( x _1-1\right)+4 \beta, 2\left( x _2-1\right)+$ $4 \beta, \ldots . ., 2\left(x_{10}-1\right)+4 \beta$ ના મધ્યક અને વિચરણ હોય તો $\frac{\beta \mu}{\sigma^2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]

નીચે આપેલ માહિતી પરથી બતાવો કે $A$ અને $B$ માંથી કયા સમૂહમાં વધારે ચલન છે?

ગુણ

$10-20$ $20-30$ $30-40$ $40-50$ $50-60$ $60-70$ $70-80$
સમૂહ  $A$ $9$ $17$ $32$ $33$ $40$ $10$ $9$
સમૂહ $B$ $10$ $20$ $30$ $25$ $43$ $15$ $7$

નીચે આપેલ માહિતી માટે વિચરણ અને પ્રમાણિત વિચલન શોધો : 

${x_i}$ $4$ $8$ $11$ $17$ $20$ $24$ $32$
${f_i}$ $3$ $5$ $9$ $5$ $4$ $3$ $1$