- Home
- Standard 11
- Mathematics
कक्षा $11$ के एक सेक्शन में छात्रों की ऊँचाई तथा भार के लिए निम्नलिखित परिकलन किए गए हैं
ऊँचाई | भार | |
माध्य | $162.6\,cm$ | $52.36\,kg$ |
प्रसरण | $127.69\,c{m^2}$ | $23.1361\,k{g^2}$ |
क्या हम कह सकते हैं कि भारों में ऊँचाई की तुलना में अधिक विचरण है ?
Solution
To compare the variability, we have to calculate their coefficients of variation.
Given $\quad$ Variance of height $=127.69 cm ^{2}$
Therefore Standard deviation of height $=\sqrt{127.69} cm =11.3 cm$
Also $\quad$ Variance of weight $=23.1361 kg ^{2}$
Therefore Standard deviation of weight $=\sqrt{23.1361} kg =4.81 kg$
Now, the coefficient of variations $(C.V.)$ are given by
$(C.V.)$ in heights $=\frac{\text { Standard } \text { Deviation }}{\text { Mean }} \times 100$
$=\frac{11.3}{162.6} \times 100=6.95$
and $\quad$ $(C.V.)$ in weights $=\frac{4.81}{52.36} \times 100=9.18$
Clearly $C.V.$ in weights is greater than the $C.V.$ in heights
Therefore, we can say that weights show more variability than heights
Similar Questions
लघु विधि द्वारा माध्य व मानक विचलन ज्ञात कीजिए।
${x_i}$ | $60$ | $61$ | $62$ | $63$ | $64$ | $65$ | $66$ | $67$ | $68$ |
${f_i}$ | $2$ | $1$ | $12$ | $29$ | $25$ | $12$ | $10$ | $4$ | $5$ |