आइए निम्नलिखित समीकरण पर विचार करे $\frac{1}{2} m v^{2}=m g h$ यहाँ $m$ वस्तु का द्रव्यमान, $v$ इसका वेग है, $g$ गुरुत्वीय त्वरण और $h$ ऊँचाई है। जाँचिए कि क्या यह समीकरण विमीय दृष्टि से सही है।
Answer The dimensions of $LHS$ are
$[ M ]\left[ L T ^{-1}\right]^{2}=[ M ]\left[ L ^{2} T ^{-2}\right]$
$=\left[ M L ^{2} T ^{-2}\right]$
The dimensions of $RHS$ are
$[ M ]\left[ L T ^{-2}\right][ L ]=[ M ]\left[ L ^{2} T ^{-2}\right]$
$=\left[ M L ^{2} T ^{-2}\right]$
The dimensions of $LHS$ and $RHS$ are the same and hence the equation is dimensionally correct.
पानी में उत्पन्न तरंग की चाल $v=\lambda^a g^b \rho^c$ द्वारा दी गई है, जहाँ $\lambda, g$ एवं $\rho$ क्रमशः तरंग का तरंगदैर्ध्य, गुरुत्वीय त्वरण एवं पानी का घनत्व हैं। $a, b$ एवं $c$ का मान क्रमश: है:
सूची $I$ का सूची $II$ के साथ मिलान करें।
सूची-$I$ | सूची-$II$ |
$A$ बल आघूर्ण | $I$ $\mathrm{ML}^{-2} \mathrm{~T}^{-2}$ |
$B$ प्रतिबल | $II$ $\mathrm{ML}^{-2} \mathrm{~T}^{-2}$ |
$C$ दाब प्रवणता | $III$ $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$ |
$D$ श्यानता गुणांक | $IV$ $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ |
नीचे दिए गए विकल्पों में से सही उत्तर चुनिये।
मान लीजिये कि एक इकाई प्रणाली में द्रव्यमान तथा कोणीय संवेग विमा (dimensionless) रहित है। यदि लम्बाई की विमा $L$ हो तब निम्नलिखित कथनों में से कौनसा (से) सही है( हैं) ?
$(1)$ बल की विमा (dimension) $L ^{-3}$ है।
$(2)$ ऊर्जा की विमा (dimension) $L ^{-2}$ है।
$(3)$ शक्ति की विमा (dimension) $L ^{-5}$ है।
$(4)$ रेखीय संवेग की विमा (dimension) $L ^{-1}$ है।