एक द्रव्यमान $m$ स्प्रिंग से लटका है जिसका स्प्रिंग नियतांक $K$ है। इस द्रव्यमान की आवृत्ति $f$ निम्न सूत्र द्वारा दर्शायी जा रही है $f = C.{m^x}.{K^y}$ यहाँ पर $C$ एक विमाहीन राशि है। $x$ और $y$ के मान होंगें
$x = \frac{1}{2},\,y = \frac{1}{2}$
$x = - \frac{1}{2},\,y = - \frac{1}{2}$
$x = \frac{1}{2},\,y = - \frac{1}{2}$
$x = - \frac{1}{2},\,y = \frac{1}{2}$
मान लीजिये कि एक इकाई प्रणाली में द्रव्यमान तथा कोणीय संवेग विमा (dimensionless) रहित है। यदि लम्बाई की विमा $L$ हो तब निम्नलिखित कथनों में से कौनसा (से) सही है( हैं) ?
$(1)$ बल की विमा (dimension) $L ^{-3}$ है।
$(2)$ ऊर्जा की विमा (dimension) $L ^{-2}$ है।
$(3)$ शक्ति की विमा (dimension) $L ^{-5}$ है।
$(4)$ रेखीय संवेग की विमा (dimension) $L ^{-1}$ है।
अपने चुम्बकीय अक्ष के सापेक्ष एक न्यूट्रॉन तारा (neutron star), जिसके चुम्बकीय आघूर्ण (magnetic moment) का मान $m$ है, $\omega$ कोणीय वेग से घूम रहा है। यह तारा विद्युत चुम्बकीय शक्ति $P =\mu_0^x m^y \omega^z c^u$ उत्सर्जित करता है, जहाँ $\mu_0$ और $c$ निर्वात की पारगम्यता (permeability) एव निर्वात में प्रकाश की चाल है। तब इनमें से कौन सा उत्तर सही है ?
विभानतार $V$, विधुत धारा $I$, पराविधुतांक $\varepsilon_0$, पारगम्यता $\mu_0$ तथा प्रकाश की चाल $c$ को मिलाकर विमीय रूप से सही विकल्प है (हैं)
$(A)$ $\mu_0 I ^2=\varepsilon_0 V ^2$ $(B)$ $\varepsilon_0 I =\mu_0 V$ $(C)$ $I =\varepsilon_0 cV$ $(D)$ $\mu_0 cI =\varepsilon_0 V$
सूची$-I$ | सूची$-II$ |
$(a)$ चुम्बकीय प्रेरण | $(i)$ ${ML}^{2} {T}^{-2} {A}^{-1}$ |
$(b)$ चुम्बकीय फ्लक्स | $(ii)$ ${M}^{0} {L}^{-1} {A}$ |
$(c)$ चुम्बकशीलता | $(iii)$ ${MT}^{-2} {A}^{-1}$ |
$(d)$ चुम्बकन | $(iv)$ ${MLT}^{-2} {A}^{-2}$ |
किसी कण की समय $t$ पर स्थिति निम्न प्रकार दी गयी है $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\;(1 - {c^{ - \alpha \,t}})$, जहाँ ${v_0}$ एक नियतांक तथा $\alpha > 0,$ ${v_0}$ व $\alpha $ की विमायें क्रमश: हैं