फलन $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ जहाँ $[.]$ महत्तम पूर्णांक फलन है, परिभाषित है
$R$ के लिए
$R - \{ ( - 1,\;1) \cup n|n \in Z\} $
${R^ + } - (0,\;1)$ के लिए
${R^ + } - \{ n|n \in N\} $ के लिए
दी गयी श्रेणी का मान होगा $\sum \limits_{n=0}^{1947} \frac{1}{2^n+\sqrt{2^{1947}}}$
यदि $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. तब $\alpha $ का वह मान, जिसके लिए $f(f(x)) = x$ होगा
यदि $E = \{ 1,2,3,4\} $ तथा $F = \{ 1,2\} $, तब समुच्चय $E$ से $F$ में बनने वाले आच्छादक फलनों की संख्या है
यदि $f(x)=\left(\frac{3}{5}\right)^{x}+\left(\frac{4}{5}\right)^{x}-1, x \in R$ है, तो समीकरण $f(x)=0$ का/के
मान लें कि $f: R \rightarrow R$ एक फलन निम्न प्रकार से परिभाषित किया गया है
$f(x)=\left\{\begin{array}{cl}\frac{\sin \left(x^2\right)}{x} & \text { if } x \neq 0, \\
0 & \text { if } x=0\end{array}\right.$
तब $x=0$ पर $f$