फलन $f(x) = \;[x]\; - x$ का परिसर है
$[0, 1]$
$(-1, 0]$
$R$
$(-1, 1)$
(b) ग्राफ से,
$ \Rightarrow $ परिसर $(-1, 0]$ है।
फलन $f(x)=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+x\right)+\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)$
$-\cos \left(\frac{3 \pi}{4}-x\right))$ का परिसर है
सिद्ध कीजिए कि $f(x)=\frac{1}{x}$ द्वारा परिभाषित फलन $f: R_* , \rightarrow R_*$, एकैकी तथा आच्छादक है, जहाँ $R_*$, सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत $R_*$, को $N$ से बदल दिया जाए, जब कि सहप्रांत पूर्ववत $R_*$ही रहे, तो भी क्या यह परिणाम सत्य होगा?
फलन $f(x)=\frac{\cos ^{-1}\left(\frac{x^2-5 x+6}{x^2-9}\right)}{\log _e\left(x^2-3 x+2\right)}$ का प्रांत है
सिद्ध कीजिए कि $f: R \rightarrow\{x \in R :-1 < x < 1\}$ जहाँ $f(x)=\frac{x}{1+|x|}, x \in R$ द्वारा
परिभाषित फलन एकैकी तथा आच्छादक है ।
फलन $f(x) = {(x + 1)^2}$, $x \ge – 1$ यदि $g(x)$ एक ऐसा फलन है, जिसका ग्राफ, सरल रेखा $y = x$ के सापेक्ष, $f(x)$ के ग्राफ का परावर्तन है, तब $g(x)$=
Confusing about what to choose? Our team will schedule a demo shortly.