एक फलन $f$, समीकरण $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$, सभी $x \ne 1$ के लिए, को सन्तुष्ट करता है। तो $f(7)$ का मान है
$8$
$4$
$-8$
$11$
यदि फलन $f : R -\{1 .-1\} \rightarrow A , f (x)=\frac{x^{2}}{1-x^{2}}$, द्वारा परिभाषित है तथा आच्छादी (surjective) है, तो $A$ बराबर है :
यदि $f:R \to R$; $f(x + y) = f(x) + f(y)$, को संतुष्ट करता है; सभी $x,\;y \in R$ के लिए तथा $f(1) = 7$, तब $\sum\limits_{r = 1}^n {f(r)} $ का मान है
यदि $f(x + ay,\;x - ay) = axy$, तब $f(x,\;y) =$
सिद्ध कीजिए कि $f(x)=2 x$ द्वारा प्रदत्त फलन $f: N \rightarrow N$ एकैकी है किंतु आच्छादक नहीं है।
फलन $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, जहाँ $p > 0,\;q > 0,\;r > 0$ का केवल एक बिन्दु पर निम्निष्ठ मान होगा यदि