माना फलन $\mathrm{f}: \mathrm{R}-\{0,1\} \rightarrow \mathrm{R}$ इस प्रकार है कि $\mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{1-\mathrm{x}}\right)=1+\mathrm{x}$ है। तो $\mathrm{f}($2$)$ बराबर है-
$\frac{9}{2}$
$\frac{9}{4}$
$\frac{7}{4}$
$\frac{7}{3}$
$\mathrm{f}(\mathrm{x})=4 \sqrt{2} \mathrm{x}^3-3 \sqrt{2} \mathrm{x}-1$ द्वारा परिभाषित फलन
$\mathrm{f}:\left[\frac{1}{2}, 1\right] \rightarrow \mathrm{R}$ के लिए कथनों
($I$) वक्र $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{x}$-अक्ष को मात्र एक बिंदु पर काटता है
($II$) वक्र $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{x}$-अक्ष को $\mathrm{x}=\cos \frac{\pi}{12}$ पर काटता है में से
मान लें कि $N$ एक धनात्मक संख्याओं का समुच्चय हैं। सभी $n \in N$ के लिए मान लें कि
$f_n=(n+1)^{1 / 3}-n^{1 / 3}$ एवं $A=\left\{n \in N : f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ तब
फलन $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ जहाँ $[.]$ महत्तम पूर्णांक फलन है, परिभाषित है
माना $A =\left\{x_{1}, x_{2}, \ldots, x_{7}\right\}$ तथा $B =\left\{y_{1}, y_{2}, y_{3}\right\}$ ऐसे दो समुच्चय हैं जिनमें क्रमशः सात तथा तीन विभित्र अवयव हैं ; तो ऐसे फलनों $f: A \rightarrow B$ की कुल संख्या, जो कि आच्छादक हैं, यदि $A$ में ऐसे ठीक तीन $x$ अवयव हैं जिनके लिए $f(x)=y_{2}$ है
मान लें कि $x \in R$ के लिए $R$ सभी वास्तविक संख्याओं का समुच्चय है और $f(x)=\sin ^{10} x\left(\cos ^8 x+\right.$ $\left.\cos ^4 x+\cos ^2 x+1\right)$. मान लें कि $S=\left\{\lambda \in R \mid\right.$ में एक बिंदु $c \in(0,2 \pi)$ है जिसके लिए $\left.f^{\prime}(c)=\lambda f(c)\right\}$. तब