- Home
- Standard 11
- Mathematics
Trigonometrical Equations
normal
The general solution of the equation $sin^{100}x\,-\,cos^{100} x= 1$ is
A
$2n\pi + \frac{\pi }{3},\,n \in I$
B
$n\pi + \frac{\pi }{2},\,n \in I$
C
$n\pi + \frac{\pi }{4},\,n \in I$
D
$2n\pi - \frac{\pi }{3},\,n \in I$
Solution
We have $\sin ^{100} x-\cos ^{100} x=1$
or $\sin ^{100} x=1+\cos ^{100} x$
Since $L.H.S.\,\, \le 1\,\,and\,\,R.H.S. \ge 1,L.H.S. = R.HS. = 1$
Then, $x=n \pi+\frac{\pi}{2}, n \in I$
Standard 11
Mathematics