The general solution of the equation $sin^{100}x\,-\,cos^{100} x= 1$ is

  • A

    $2n\pi  + \frac{\pi }{3},\,n \in I$

  • B

    $n\pi  + \frac{\pi }{2},\,n \in I$

  • C

    $n\pi  + \frac{\pi }{4},\,n \in I$

  • D

    $2n\pi  - \frac{\pi }{3},\,n \in I$

Similar Questions

If $n$ is any integer, then the general solution of the equation $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ is

The number of solutions of $tan\, (5\pi\, cos\, \theta ) = cot (5 \pi \,sin\, \theta )$ for $\theta$ in $(0, 2\pi )$ is :

If $\tan 2\theta \tan \theta = 1$, then the general value of $\theta $ is

Let $P = \left\{ {\theta :\sin \,\theta  - \cos \,\theta  = \sqrt 2 \,\cos \,\theta } \right\}$ and $Q = \left\{ {\theta :\sin \,\theta  + \cos \,\theta  = \sqrt {2\,} \sin \,\theta } \right\}$ be two sets. Then

  • [JEE MAIN 2016]

$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ is equal to