The general solution of the equation $sin^{100}x\,-\,cos^{100} x= 1$ is
$2n\pi + \frac{\pi }{3},\,n \in I$
$n\pi + \frac{\pi }{2},\,n \in I$
$n\pi + \frac{\pi }{4},\,n \in I$
$2n\pi - \frac{\pi }{3},\,n \in I$
If $n$ is any integer, then the general solution of the equation $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ is
The number of solutions of $tan\, (5\pi\, cos\, \theta ) = cot (5 \pi \,sin\, \theta )$ for $\theta$ in $(0, 2\pi )$ is :
If $\tan 2\theta \tan \theta = 1$, then the general value of $\theta $ is
Let $P = \left\{ {\theta :\sin \,\theta - \cos \,\theta = \sqrt 2 \,\cos \,\theta } \right\}$ and $Q = \left\{ {\theta :\sin \,\theta + \cos \,\theta = \sqrt {2\,} \sin \,\theta } \right\}$ be two sets. Then
$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ is equal to