આપલે વર્તુળમાટે ઉપરોક્ત વિધાનમાંથી સત્ય વિધાન મેળવો.
$x^{2}+y^{2}-10 x-10 y+41=0$ ; $x^{2}+y^{2}-22 x-10 y+137=0$
બંને વર્તુળોને સમાન કેન્દ્ર છે.
બંને વર્તુળો છેદતા નથી
બંને વર્તુળો માત્ર એકજ બિંદુમાં છેદે છે.
બંને વર્તુળો બે બિંદુમાં છેદે છે.
ત્રણ વર્તૂળો $ x^2+ y^2 = a^2, (x - c)^2 + y^2 = a^2$ અને $x^2+ (y - b)^2 = a^2 $ નું મૂલાક્ષ કેન્દ્ર (Radical Center) મેળવો.
વર્તુળો ${x^2} + {y^2} - 2x - 4y = 0$ અને ${x^2} + {y^2} - 8y - 4 = 0$ એ. . . .
$k$ ના કયા મુલ્ય માટે વર્તૂળો $x^2 + y^2 + 5x + 3y + 7 = 0$ અને $x^2 + y^2 - 8x + 6y + k = 0$ એકબીજાને લંબ છેદે ?
વર્તૂળ $x^2 + y^2 + 2gx + 2fy + \alpha = 0$ પરના કોઈપણ બિંદુ પરથી વર્તૂળ $x^2 + y^2 + 2gx + 2fy + \beta = 0$ પર દોરેલ સ્પર્શકની લંબાઈ :
વર્તુળ $x^{2}+y^{2}-2 \sqrt{2} x-6 \sqrt{2} y+14=0$ નો કોઈ એક વ્યાસએ વર્તુળ $(x-2 \sqrt{2})^{2}+(y-2 \sqrt{2})^{2}= r ^{2}$ ની કોઈ એક જીવા હોય, તો $r^{2}$ ની કિંમત............ છે.