The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is
$\left( { - \infty ,\,2} \right]$
$[2,\,4]$
$\left[ {4, + \infty } \right)$
None of these
The value of ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}$ is
For $y = {\log _a}x$ to be defined $'a'$ must be
The value of $(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ is equal to
If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to
If ${x^{{3 \over 4}{{({{\log }_3}x)}^2} + {{\log }_3}x - {5 \over 4}}} = \sqrt 3 $ then $x$ has