The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is

  • A

    $\left( { - \infty ,\,2} \right]$

  • B

    $[2,\,4]$

  • C

    $\left[ {4, + \infty } \right)$

  • D

    None of these

Similar Questions

Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,

  • [KVPY 2018]

If ${x^{{3 \over 4}{{({{\log }_3}x)}^2} + {{\log }_3}x - {5 \over 4}}} = \sqrt 3 $ then $x$ has

If $a, b, c$ are distinct positive numbers, each different from $1$, such that $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ then $abc =$

If $3^x=4^{x-1}$, then $x=$

$(A)$ $\frac{2 \log _3 2}{2 \log _3 2-1}$ $(B)$ $\frac{2}{2-\log _2 3}$ $(C)$ $\frac{1}{1-\log _4 3}$ $(D)$ $\frac{2 \log _2 3}{2 \log _2 3-1}$

  • [IIT 2013]

The number of real values of the parameter $k$ for which ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ with real coefficients will have exactly one solution is