The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is

  • A

    $\left( { - \infty ,\,2} \right]$

  • B

    $[2,\,4]$

  • C

    $\left[ {4, + \infty } \right)$

  • D

    None of these

Similar Questions

If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct

If ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, then relation between $a$ and $b$ will be

If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in

The product of all positive real values of $x$ satisfying the equation $x^{\left(16\left(\log _5 x\right)^3-68 \log _5 x\right)}=5^{-16}$is. . . . .

  • [IIT 2022]

Solution set of equation

$\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ is $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ then the value of $(a + b)$ is