The number ${\log _{20}}3$ lies in
$\left( {1/4,\,\,1/3} \right)$
$\left( {1/3,\,\,1/2} \right)$
$\left( {1/2,\,3/4} \right)$
$\left( {3/4,\,\,4/5} \right)$
If ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0,$ then $x$ is equal to
The number ${\log _2}7$ is
If ${1 \over 2} \le {\log _{0.1}}x \le 2$ then
If ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ then the number of values of $x$ which are integral multiples of ${\pi \over 4},$ is
${\log _4}18$ is