વિધેય $f(\mathrm{x})=\frac{8^{2 \mathrm{x}}-8^{-2 \mathrm{x}}}{8^{2 \mathrm{x}}+8^{-2 \mathrm{x}}}, \mathrm{x} \in(-1,1),$ નું વ્યસ્ત વિધેય મેળવો.
$\frac{1}{4}\left(\log _{8} e\right) \log _{e}\left(\frac{1-x}{1+x}\right)$
$\frac{1}{4} \log _{e}\left(\frac{1-x}{1+x}\right)$
$\frac{1}{4}\left(\log _{8} e\right) \log _{e}\left(\frac{1+x}{1-x}\right)$
$\frac{1}{4} \log _{e}\left(\frac{1+x}{1-x}\right)$
જો $f(x) = 3x - 5$, તો ${f^{ - 1}}(x) =$
જો $X$ અને $Y$ એ બે અરિક્ત ગણ છે કે જ્યાં $f:X \to Y$ એ રીતે વ્યખ્યાયિત છે કે જેથી $C \subseteq X$ માટે $f(c) = \left\{ {f(x):x \in C} \right\}$ અને $D \subseteq Y$ માટે ${f^{ - 1}}(D) = \{ x:f(x) \in D\} $ , કોઈ $A \subseteq X$ અને $B \subseteq Y,$ તો
નીચેનામાંથી ક્યા વિધેયનુ પ્રતિવિધેય શક્ય નથી. (જ્યા $[.]\, \to$ એ મહત્તમ પુર્ણાક વિધેય છે.)
સ્ટિલના ટુકડાને $100° C$ ગરમ કરવામાં આવે છે અને ઓરડામાં ઠંડો થવા દેવામાં આવે છે. ક્યો ગ્રાફ સાચો છે?
અહી $f: R -\{3\} \rightarrow R -\{1\}$ એ $f(x)=\frac{x-2}{x-3} $ દ્વારા આપેલ છે. અને $g: R \rightarrow R$ એ $g ( x )=2 x -3$ દ્વારા આપેલ છે. તો $x$ ની બધીજ કિમતોનો સરવાળો મેળવો કે જેથી $f^{-1}( x )+ g ^{-1}( x )=\frac{13}{2}$ થાય.