વિધેય $\frac{{{{10}^x} - {{10}^{ - x}}}}{{{{10}^x} + {{10}^{ - x}}}}$ નું વ્યસ્ત વિધેય મેળવો.
$\frac{1}{2}{\log _{10}}\left( {\frac{{1 + x}}{{1 - x}}} \right)$
$\frac{1}{2}{\log _{10}}\left( {\frac{{1 - x}}{{1 + x}}} \right)$
$\frac{1}{4}{\log _{10}}\left( {\frac{{2x}}{{2 - x}}} \right)$
એકપણ નહી.
વિધેય $f(\mathrm{x})=\frac{8^{2 \mathrm{x}}-8^{-2 \mathrm{x}}}{8^{2 \mathrm{x}}+8^{-2 \mathrm{x}}}, \mathrm{x} \in(-1,1),$ નું વ્યસ્ત વિધેય મેળવો.
ધારો કે વિધેય $f: R \rightarrow R$, $f(x)=4 x+3$. સાબિત કરો કે $f$ વ્યસ્તસંપન્ન છે. વિધેય નું પ્રતિવિધેય શોધો.
જો વિધેય $f: R \rightarrow R$ એ $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$ દ્વારા આપેલ હોય, તો $(fof)(x) =$ ...... છે.
જો વિધેય $f:[1,\;\infty ) \to [1,\;\infty )$ એ $f(x) = {2^{x(x - 1)}}$ રીતે વ્યખ્યાયિત હોય તો ${f^{ - 1}} (x)$ મેળવો.
$y=5^{\log x}$ નો વ્યસ્ત મેળવો.