ધારો કે $S =\{1,2,3\} .$ નીચે આપેલ વિધેય $f: S \rightarrow S$ નો વ્યસ્ત મળશે કે નહિ તે નક્કી કરો અને જો $f^{-1}$ નું અસ્તિત્વ હોય તો તે શોધો. $f^{-1}=\{(1,2),(2,1),(3,1)\}=f$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since $f(2)=f(3)=1, f$ is not one-one, so that $f$ is not invertible.

Similar Questions

જો વિધેય $f: R \rightarrow R$ એ $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$ દ્વારા આપેલ હોય, તો $(fof)(x) =$ ...... છે.

વિધેય $y = 2x - 3$ નું વ્યસ્ત વિધેય મેળવો.

વિધેય $f: R _{+} \rightarrow[-5, \infty)$, $f(x)=9 x^{2}+6 x-5$ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $f$ વ્યસ્તસંપન્ન છે અને $f^{-1}(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right)$

વિધેય $f(x) = \frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} + 2$ નું વ્યસ્ત વિધેય મેળવો.

વિધેય $f: N \rightarrow R$, $f(x)=4 x^{2}+12 x+15$ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $f: N \rightarrow S $ એ વ્યસ્તસંપન્ન છે, જ્યાં $S$ એ $f$ નો વિસ્તાર છે. $f$ નું પ્રતિવિધેય શોધો.