किसी बन्द पृष्ठ से अन्दर की ओर तथा बाहर की ओर विद्युत फ्लक्स $N - {m^2}/C$ इकाईयों में क्रमश: $8 \times {10^3}$ व $4 \times {10^3}$ है तो पृष्ठ के अन्दर कुल आवेश होगा [जहाँ ${ \in _0} = $ विद्युतशीलता है
$4 \times {10^3}$ कूलॉम
$ - 4 \times {10^3}$ कूलॉम
$\frac{{( - 4 \times {{10}^3})}}{\varepsilon }$ कूलॉम
$ - 4 \times {10^3}{\varepsilon _0}$ कूलॉम
चित्रानुसार एक अनंत लंवाई के एकसमान आवेशित सीधे तार, जिसका रैखिक आवेश घनत्व $\lambda$ है, को $y-z$ तल में $y$-अक्ष के समांतर $z=\frac{\sqrt{3}}{2} a$ दूरी पर रखा गया है। यदि इसके विधुत क्षेत्र का $x-y$ तल में स्थित मूल विंदु पर केन्द्रित $A B C D$ आयताकार सतह से होकर जाने वाला फ्लक्स ( $\varepsilon_0=$ परावैद्युतांक का परिमाण) $\frac{\lambda L }{ n \varepsilon_0}$ है. तब $n$ का मान है।
ऋण वैद्युत आवेश के चारों ओर बल रेखाएँ होती हैं
चित्रानुसार एक स्थिरवैद्युत क्षेत्र रेखा, बिन्दु आवेश $q_1$ से कोण $\alpha$ पर निकलती है तथा बिन्दु आवेश $-q_2$ से कोण $\beta$ पर मिलती है। यहाँ $q _1$ तथा $q _2$ दोनों धनात्मक हैं। यदि $q _2=\frac{3}{2} q _1$ तथा $\alpha=30^{\circ}$, तब
$z$-अक्ष के समांतर एक अनंत लम्बाई की पतली अचालक (non-conducting) तार पर एकसमान रेखीय आवेश घनत्व (uniform line charge density) $\lambda$ है। यह तार $R$ त्रिज्या वाले एक पतले अचालक गोलीय कोश (spherical shell) को इस प्रकार भेदता है कि आर्क (arc) $P Q$, गोलीय कोश के केंद्र $O$ पर $120^{\circ}$ का कोण बनाती है, जैसा कि चित्र में दर्शाया गया है। मुक्त आकाश का पराविधुतक (permittivity of free space) $\epsilon_0$ है। निम्नलिखित कथनों में से कौन सा (से) सही है (हैं)?
$(A)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{3} R \lambda / \epsilon_0$ है
$(B)$ विधुत क्षेत्र (electric field) का $z$-घटक ( $z$-component) कोश के पृष्ठ (surface) के सभी बिन्दुओं पर शून्य है
$(C)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{2} R \lambda / \epsilon_0$ है
$(D)$ विधुत क्षेत्र (electric field) कोश के पृप्ठ के सभी बिन्दुओं पर लम्बवत (normal) है
निम्न चित्र में गॉसियन सतह $A$ द्वारा घेरे गये आवेशों के कारण इससे निर्गत फ्लक्स होगा (दिया है $q_1$ = $-14 \,nC$, $q_2$ = $78.85 \,nC$, $q_3$ = $-56 \,nC$)