The ionization constant of dimethylamine is $5.4 \times 10^{-4}$. Calculate its degree of ionization in its $0.02$ $M$ solution. What percentage of dimethylamine is ionized if the solution is also $0.1 \,M$ in $NaOH ?$
$K_{b}=5.4 \times 10^{-4}$
$c=0.02\, M$
Then, $\alpha=\sqrt{\frac{K_{b}}{c}}$
$=\sqrt{\frac{5.4 \times 10^{-4}}{0.02}}$
$=0.1643$
Now, if $0.1 \,M$ of $NaOH$ is added to the solution, then $NaOH$ (being a strong base) undergoes complete ionization.
$NaOH _{(a q)} \longleftrightarrow Na ^{+}_{(aq)}+ OH _{(aq)}^{-}$
$0.1\,M$ $0.1\,M$
And,
${\left( {C{H_3}} \right)_2}NH\quad + \quad {H_2}O \leftrightarrow \quad {\left( {C{H_3}} \right)_2}NH_2^ + + \quad OH$
$(0.02-x)$ $x$ $x$
$;0.02\,M$ $;0.1\,M$
Then, $\left[\left( CH _{3}\right)_{2} NH _{2}^{+}\right]=x$
$\left[ OH ^{-}\right]=x+0.1 ; 0.1$
$\Rightarrow K_{b}=\frac{\left[\left( CH _{3}\right)_{2} NH _{2}^{+}\right]\left[ OH ^{-}\right]}{\left[\left( CH _{3}\right)_{2} NH \right]}$
$5.4 \times 10^{-4}=\frac{x \times 0.1}{0.02}$
$x=0.0054$
It means that in the presence of $0.1\, M\, NaOH , 0.54 \%$ of dimethylamine will get dissociated.
What is $[{H^ + }]$ of a solution that is $0.01\,M$ in $HCN$ and $0.02\,M$ in $NaCN$ $({K_a}$for $HCN = 6.2 \times {10^{ - 10}})$
For a concentrated solution of a weak electrolyte ( $K _{ eq }=$ equilibrium constant) $A _2 B _3$ of concentration ' $c$ ', the degree of dissociation " $\alpha$ ' is
A compound whose aqueous solution will have the highest $pH$
The $pH$ of $0.004 \,M$ hydrazine solution is $9.7 .$ Calculate its ionization constant $K_{ b }$ and $pK _{ b }$
${K_b}$ of $N{H_4}OH = 1.8 \times {10^{ - 5}}$ calculate $pH$ of $0.15$ $mol$ $N{H_4}OH$ and $0.25$ $mol$ $N{H_4}OH$ containing solution.