The ionization constant of dimethylamine is $5.4 \times 10^{-4}$. Calculate its degree of ionization in its $0.02$ $M$ solution. What percentage of dimethylamine is ionized if the solution is also $0.1 \,M$ in $NaOH ?$
$K_{b}=5.4 \times 10^{-4}$
$c=0.02\, M$
Then, $\alpha=\sqrt{\frac{K_{b}}{c}}$
$=\sqrt{\frac{5.4 \times 10^{-4}}{0.02}}$
$=0.1643$
Now, if $0.1 \,M$ of $NaOH$ is added to the solution, then $NaOH$ (being a strong base) undergoes complete ionization.
$NaOH _{(a q)} \longleftrightarrow Na ^{+}_{(aq)}+ OH _{(aq)}^{-}$
$0.1\,M$ $0.1\,M$
And,
${\left( {C{H_3}} \right)_2}NH\quad + \quad {H_2}O \leftrightarrow \quad {\left( {C{H_3}} \right)_2}NH_2^ + + \quad OH$
$(0.02-x)$ $x$ $x$
$;0.02\,M$ $;0.1\,M$
Then, $\left[\left( CH _{3}\right)_{2} NH _{2}^{+}\right]=x$
$\left[ OH ^{-}\right]=x+0.1 ; 0.1$
$\Rightarrow K_{b}=\frac{\left[\left( CH _{3}\right)_{2} NH _{2}^{+}\right]\left[ OH ^{-}\right]}{\left[\left( CH _{3}\right)_{2} NH \right]}$
$5.4 \times 10^{-4}=\frac{x \times 0.1}{0.02}$
$x=0.0054$
It means that in the presence of $0.1\, M\, NaOH , 0.54 \%$ of dimethylamine will get dissociated.
Calculate the $pH$ of a $0.10 \,M$ ammonia solution. Calculate the pH after $50.0 \,mL$ of this solution is treated with $25.0 \,mL$ of $0.10 \,M$ $HCl$. The dissociation constant of ammonia, $K_{b}=1.77 \times 10^{-5}$
Find $pH$ of $5 \times 10^{-3}\, M$ $H_2CO_3$ solution having $10\%$ dissociation
The hydrogen ion concentration of $0.1\,N$ solution of $C{H_3}COOH,$ which is $30\%$ dissociated, is
Write characteristic and uses of weak base equilibrium constant ${K_b}$.
The ionization constant of phenol is $1.0 \times 10^{-10} .$ What the concentration of phenolate ion in $0.05$ $M$ solution of phenol? What will be its degree of ionization if the solution is a lso $0.01$ $M$ in sodium phenolate?