For a weak acid $HA$ with dissociation constant ${10^{ - 9}},\,\,pOH$ of its $0.1 \,M$ solution is
$10$
$3$
$11$
$9$
When $100 \ mL$ of $1.0 \ M \ HCl$ was mixed with $100 \ mL$ of $1.0 \ M \ NaOH$ in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ} C$ was measured for the beaker and its contents (Expt. $1$). Because the enthalpy of neutralization of a strong acid with a strong base is a constant $\left(-57.0 \ kJ \ mol ^{-1}\right)$, this experiment could be used to measure the calorimeter constant. In a second experiment (Expt. $2$), $100 \ mL$ of $2.0 \ M$ acetic acid $\left(K_a=2.0 \times 10^{-5}\right)$ was mixed with $100 \ mL$ of $1.0 M \ NaOH$ (under identical conditions to Expt. $1$) where a temperature rise of $5.6^{\circ} C$ was measured.
(Consider heat capacity of all solutions as $4.2 J g ^{-1} K ^{-1}$ and density of all solutions as $1.0 \ g mL ^{-1}$ )
$1.$ Enthalpy of dissociation (in $kJ mol ^{-1}$ ) of acetic acid obtained from the Expt. $2$ is
$(A)$ $1.0$ $(B)$ $10.0$ $(C)$ $24.5$ $(D)$ $51.4$
$2.$ The $pH$ of the solution after Expt. $2$ is
$(A)$ $2.8$ $(B)$ $4.7$ $(C)$ $5.0$ $(D)$ $7.0$
Give the answer question $1$ and $2.$
$0.2$ molar solution of formic acid is ionized $3.2\%$. Its ionization constant is
Calculate the $pH$ of the solution in which $0.2 \,M\, NH _{4} Cl$ and $0.1 \,M\, NH _{3}$ are present. The $pK _{ b }$ of ammonia solution is $4.75$
Calculate $\left[ {{S^{ - 2}}} \right]$ and $\left[ {H{S^{ - 2}}} \right]$ of the solution which contain$0.1$ $M$ ${H_2}S$ and $0.3$ $M$ $HCl$.
[ ${H_2}S$ of ${K_a}\left( 1 \right) = 1.0 \times {10^{ - 7}}$ and ${K_a}\left( 2 \right) = 1.3 \times {10^{ - 13}}$ ]
Derive the equation of relation between weak base ionization constant ${K_b}$ and its conjugate acid ionization constant ${K_a}$