4-1.Complex numbers
medium

निम्नतम धनात्मक पूर्णाक $n$ जिसके लिए $\frac{(2 i)^{ n }}{(1- i )^{ n -2}}, i =\sqrt{-1}$ एक धनात्मक पूर्णांक हे, है ...........

A

$2$

B

$4$

C

$6$

D

$8$

(JEE MAIN-2021)

Solution

$\frac{(2 \mathrm{i})^{\mathrm{n}}}{(1-\mathrm{i})^{\mathrm{n}-2}}=\frac{(2 \mathrm{i})^{\mathrm{n}}}{(-2 \mathrm{i})^{\frac{\mathrm{n}-2}{2}}}$

$=\frac{(2 \mathrm{i})^{\frac{\mathrm{n}+2}{2}}}{(-1)^{\frac{\mathrm{n}-2}{2}}}=\frac{2^{\frac{n+2}{2}} ; \mathrm{i}^{\frac{n+2}{2}}}{(-1)^{\frac{n-2}{2}}}$

This is positive integer for $\mathrm{n}=6$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.