14) यदि एक प्राकृत संख्या $n$ का न्यूनतम मान इस प्रकार है कि $\left(\frac{n-1}{5}\right)+\left(\frac{n-1}{6}\right) < \left(\frac{n}{7}\right)$, जहाँ $\left(\frac{n}{r}\right)=\frac{n !}{(n-r) ! r !}$, तब $n$ का मान है
$12$
$13$
$14$
$15$
अंग्रेजी वर्णमाला के दिये गये $10$ अक्षरों में से $5$ अक्षरों को लेकर कितने शब्द बनाये जा सकते हैं जबकि कम से कम एक अक्षर की पुनरावृत्ति हो
$^n{C_r}{ + ^n}{C_{r - 1}}$ =
यदि $n$ और $r$ दो धनात्मक पूर्णांक इस प्रकार हैं कि $n \ge r,$ तब $^n{C_{r - 1}}$$ + {\,^n}{C_r} = $
ताश के $52$ पत्तों को चार व्यक्तियों में कितने प्रकार से बॉटा जा सकता है ताकि तीन व्यक्तियों में प्रत्येक के पास $17$ पत्ते हों और चौथे के पास केवल एक पत्ता हो
$12$ रिक्त स्थानों को भरने के लिए $25$ उम्मीदवार हैं, जिनमें से $5$ अनुसूचित जाति के हैं। यदि $3$ रिक्त स्थान अनुसूचित जाति के उम्मीदवारों के लिये आरक्षित हों जबकि शेष में खुली प्रतियोगिता है, तो चुनाव के कुल तरीके हैं