Gujarati
6.Permutation and Combination
medium

14) यदि एक प्राकृत संख्या $n$ का न्यूनतम मान इस प्रकार है कि $\left(\frac{n-1}{5}\right)+\left(\frac{n-1}{6}\right) < \left(\frac{n}{7}\right)$, जहाँ $\left(\frac{n}{r}\right)=\frac{n !}{(n-r) ! r !}$, तब $n$ का मान है

A

$12$

B

$13$

C

$14$

D

$15$

(KVPY-2017)

Solution

(c)

Given,

$\frac{{ }^{n-1} C_5+{ }^{n-1} C_6 < { }^n C_7}{{ }^n C_6 < { }^n C_7}$

$\left[\because{ }^n C_{r-1}+{ }^n C_r={ }^{n+1} C_r\right]$

$\frac{n !}{(n-6) ! 6 !} < \frac{n !}{(n-7) ! 7 !}$

$n-6 > 7$

$n>13$

$\therefore$ Least value of $x=14$

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.