$xyz$ ના ગુણાકારની ન્યૂનતમ કિમત મેળવો કે જેથી $\left| {\begin{array}{*{20}{c}}
x&1&1 \\
1&y&1 \\
1&1&z
\end{array}} \right|$ ની કિમંત અનૃણ મળે.
$-2\sqrt 2$
$-1$
$-16\sqrt 2$
$-8$
$\left| {\,\begin{array}{*{20}{c}}{1 + i}&{1 - i}&i\\{1 - i}&i&{1 + i}\\i&{1 + i}&{1 - i}\end{array}\,} \right| = $
નિશ્ચાયકનો ઉપયોગ કરી $(3, 1)$ અને $(9, 3)$ ને જોડતી રેખાનું સમીકરણ શોધો.
જો $p{\lambda ^4} + q{\lambda ^3} + r{\lambda ^2} + s\lambda + t = $ $\left| {\,\begin{array}{*{20}{c}}{{\lambda ^2} + 3\lambda }&{\lambda - 1}&{\lambda + 3}\\{\lambda + 1}&{2 - \lambda }&{\lambda - 4}\\{\lambda - 3}&{\lambda + 4}&{3\lambda }\end{array}\,} \right|$ તો $t$ ની કિમત મેળવો.
$\left|\begin{array}{cc}x & x+1 \\ x-1 & x\end{array}\right|$ ની કિંમત શોધો.
સમીકરણ સંહતિ $2x + y - z = 7,\,\,x - 3y + 2z = 1,\,x + 4y - 3z = 5$ ના ઉકેલની સંખ્યા મેળવો.