- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
गुणनफल $x y z$ का वह न्यूनतम मूल्य जिसके लिए सारणिक$\left|\begin{array}{lll} x & 1 & 1 \\ 1 & y & 1 \\ 1 & 1 & z \end{array}\right|$ ॠणेतर है
A
$-2\sqrt 2$
B
$-1$
C
$-16\sqrt 2$
D
$-8$
(JEE MAIN-2015)
Solution
$\begin{array}{*{20}{c}}
x&1&1\\
1&y&1\\
1&1&z
\end{array} \ge 0$
$xyz – x – y – z + 2 \ge 0$
$xyz + 2 \ge x + y + z \ge 3{\left( {xyz} \right)^{1/3}}$
$xyz + 2 – 3{\left( {xyz} \right)^{1/3}} \ge 0$
at $\left( {xyz} \right) = {t^3}$
${t^3} – 3t + 2 \ge 0$
$\left( {t + 2} \right){\left( {t – 1} \right)^2} \ge 0$
$\left[ {t = – 2} \right]{t^3} = – 8$
Standard 12
Mathematics