- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
medium
The length of the axes of the conic $9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$, are
A
$\frac{1}{2},\;9$
B
$3,\;\frac{2}{5}$
C
$1,\;\frac{2}{3}$
D
$3, \;2$
Solution
(c) Given that, the equation of conic
$9{x^2} + 4{y^2} – 6x + 4y + 1 = 0$
==>${(3x – 1)^2} + {(2y + 1)^2} = 1$
==> $\frac{{{{\left( {x – \frac{1}{3}} \right)}^2}}}{{\frac{1}{9}}} + \frac{{{{(y + 1)}^2}}}{{\frac{1}{2}}} = 1$.
Here $a = \frac{1}{3}$, $b = \frac{1}{2}$; $2a = \frac{2}{3}$, $2b = 1.$
Length of axes are $\left( {1,\,\frac{2}{3}} \right)$.
Standard 11
Mathematics