10-2. Parabola, Ellipse, Hyperbola
hard

If $OB$ is the semi-minor axis of an ellipse, $F_1$ and $F_2$ are its foci and the angle between $F_1B$ and $F_2B$ is a right angle, then the square of the eccentricity of the ellipse is

A

$\frac{1}{2}$

B

$\frac{1}{{\sqrt 2 }}$

C

$\frac{1}{{2\sqrt 2 }}$

D

$\frac{1}{4}$

(JEE MAIN-2014)

Solution

Let $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ be he equation of ellipse.

Given that  ${F_1}B$ and ${F_2}B$ are perpandicluar to each other.

Slope of ${F_1}B \times $ alop of ${F_2}B =  – 1$

$\left( {\frac{{0 – b}}{{ – ae – 0}}} \right) \times \left( {\frac{{0 – b}}{{ae – 0}}} \right) =  – 1$

$\left( {\frac{b}{{ae}}} \right) \times \left( {\frac{{ – b}}{{ae}}} \right) =  – 1$

${b^2} = {a^2}{e^2}$

${e^2} = \frac{{{b^2}}}{{{a^2}}}\,\,\,$         {$\because $ $\,\,{e^2} = 1 – \frac{{{b^2}}}{{{a^2}}}\,\,$}

$1 – \frac{{{b^2}}}{{{a^2}}}\,\,\, = \frac{{{b^2}}}{{{a^2}}}\,$

$1 = 2\frac{{{b^2}}}{{{a^2}}}\,\,\, \Rightarrow \frac{{{b^2}}}{{{a^2}}}\,\,\, = \frac{1}{2}$

${e^2} = 1 – \frac{{{b^2}}}{{{a^2}}}\,\,\, = 1 – \frac{1}{2} = \frac{1}{2}$

${e^2} = \frac{1}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.