एक दीर्घवृत्त के दीर्घ तथा लघु अक्षों की लम्बाइयाँ क्रमश: $10$ तथा $8$ हैं और उसका दीर्घ अक्ष $y$ - अक्ष है। दीर्घवृत्त के केन्द्र को मूलबिन्दु मानते हुये दीर्घवृत्त का समीकरण है
$\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1$
$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{25}} = 1$
$\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1$
$\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{100}} = 1$
यदि दीर्घवृत्त का केन्द्र $(0, 0)$, एक नाभि $(0, 3)$ तथा अर्ध दीर्घ अक्ष $5$ हो, तो उसका समीकरण है
एक दीर्घवृत्त की उत्केन्द्रता $\frac{1}{2}$ और एक नाभि बिन्दु $P\left( {\frac{1}{2},\;1} \right)$ है। इसकी एक नियता वृत्त ${x^2} + {y^2} = 1$ और अतिपरवलय ${x^2} - {y^2} = 1$ की बिन्दु $P$ के निकट स्थित उभयनिष्ठ स्पर्श रेखा है। दीर्घवृत्त का मानक रूप में समीकरण होगा
एक दीर्घवत्त, $E : \frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1, a ^{2}> b ^{2}$, बिन्दु $\left(\sqrt{\frac{3}{2}}, 1\right)$ से होकर जाता है तथा उसकी उत्केन्द्रता $\frac{1}{\sqrt{3}}$ है। यदि एक वत्त जिसका केन्द्र $E$ की नाभि $F (\alpha, 0), \alpha>0$ पर और त्रिज्या $\frac{2}{\sqrt{3}}$ है, दीर्घवत्त $E$ को दो बिन्दुओं $P$ तथा $Q$ पर काटता है, तो $PQ ^{2}$ बराबर है
यदि किसी $a \in R$, के लिए दीर्घवृत्त $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{9}=1$ की एक स्पर्श रेखा $3 x +4 y =12 \sqrt{2}$ है, तो दीर्घवृत्त की नाभियों के बीच की दूरी है
यदि अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की द्विगुणित कोटि $PQ$ ,इस प्रकार है कि $OPQ$ एक समबाहु त्रिभुज है, जबकि $O$ अतिपरवलय का केन्द्र है, तब अतिपरवलय की उत्केन्द्रता $e$ संतुष्ट करती है