Let the lines $y+2 x=\sqrt{11}+7 \sqrt{7}$ and $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ be normal to a circle $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. If the line $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$ is tangent to the circle $C$, then the value of $(5 h-8 k)^{2}+5 r^{2}$ is equal to.......

  • [JEE MAIN 2022]
  • A

    $916$

  • B

    $816$

  • C

    $856$

  • D

    $86$

Similar Questions

The tangent$(s)$ from the point of intersection of the lines $2x -3y + 1$ = $0$ and $3x -2y -1$ = $0$ to circle $x^2 + y^2 + 2x -4y$ = $0$ will be -

A circle passes through the points $(- 1, 1) , (0, 6)$ and $(5, 5)$ . The point$(s)$ on this circle, the tangent$(s)$ at which is/are parallel to the straight line joining the origin to its centre is/are :

Which of the following lines is a tangent to the circle ${x^2} + {y^2} = 25$ for all values of $m$.....

The equation of three circles are ${x^2} + {y^2} - 12x - 16y + 64 = 0,$ $3{x^2} + 3{y^2} - 36x + 81 = 0$ and ${x^2} + {y^2} - 16x + 81 = 0.$ The co-ordinates of the point from which the length of tangent drawn to each of the three circle is equal is

Tangents are drawn from the point $(-1,-4)$ to the circle $x^2 + y^2 - 2x + 4y + 1 = 0$. Length of corresponding chord of contact will be-