The line $2 x - y +1=0$ is a tangent to the circle at the point $(2,5)$ and the centre of the circle lies on $x-2 y=4$. Then, the radius of the circle is
$3 \sqrt{5}$
$5 \sqrt{3}$
$5 \sqrt{4}$
$4 \sqrt{5}$
Two tangents are drawn from the point $\mathrm{P}(-1,1)$ to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-6 \mathrm{y}+6=0$. If these tangents touch the circle at points $A$ and $B$, and if $D$ is a point on the circle such that length of the segments $A B$ and $A D$ are equal, then the area of the triangle $A B D$ is eqaul to:
Two concentric circles are such that the smaller divides the larger into two regions of equal area. If the radius of the smaller circle is $2$ , then the length of the tangent from any point $' P '$ on the larger circle to the smaller circle is :
If the ratio of the lengths of tangents drawn from the point $(f,g)$ to the given circle ${x^2} + {y^2} = 6$ and ${x^2} + {y^2} + 3x + 3y = 0$ be $2 : 1$, then
Consider the following statements :
Assertion $(A)$ : The circle ${x^2} + {y^2} = 1$ has exactly two tangents parallel to the $x$ - axis
Reason $(R)$ : $\frac{{dy}}{{dx}} = 0$ on the circle exactly at the point $(0, \pm 1)$.
Of these statements
The equations of tangents to the circle ${x^2} + {y^2} - 22x - 4y + 25 = 0$ which are perpendicular to the line $5x + 12y + 8 = 0$ are