रेखा $3x + 2y = 24$, $y$-अक्ष को $A$ पर एवं $x$-अक्ष को $B$ पर मिलती है। $AB$ का लम्ब समद्विभाजक $(0, - 1)$ से जाने वाली एवं $x$-अक्ष के समान्तर रेखा को $C$ पर मिलता है। त्रि.भुज $ABC$ का क्षेत्रफल .................. $\mathrm{sq. \, units}$ है
$182$
$91$
$48$
इनमें से कोई नहीं
यदि सरल रेखा $3x + 4y + 15 = 0$ पर कोई दो बिन्दु $A$ व $B$ इस प्रकार हों कि $OA = OB = 9$ इकाई, तो त्रिभुज $OAB$ का क्षेत्रफल है
$A B C D$ एक वर्ग है जिसकी भुजा की लंबाई $1$ है । भुजा $A D, B C, A B, C D$ के आंतरिक चुने हुए बिंदु $P, Q, R, S$ क्रमश: इस प्रकार हैं कि $PQ$ और $R S$ लंबकोणीय प्रतिच्छेदी रेखाएँ हैं । यदि $P Q=\frac{3 \sqrt{3}}{4}$ है, तो $R S$ का मान होगा :
रेखा $2x + 3y = 12$, $x$-अक्ष को बिन्दु $A$ तथा $y$-अक्ष को बिन्दु $B$ पर मिलती है। बिन्दु $(5, 5)$ से जाने वाली रेखा $AB$ पर लम्ब है एवं यह रेखा $x$-अक्ष, $y$-अक्ष तथा दी गई रेखा को क्रमश: $C, \,D$ व $E$ पर मिलती है। यदि $O$ मूल बिन्दु हो, तो $OCEB$ का क्षेत्रफल है
एक रेखा $L$, बिन्दुओं $(1, 1)$ व $(2, 0)$ से होकर जाती है एवं एक अन्य रेखा $L'$, बिन्दु $\left( {\frac{1}{2},0} \right)$ से होकर जाती है एवं $L$ पर लम्ब है, तो रेखाओं $L$ व $L'$ तथा $y$-अक्ष द्वारा निर्मित त्रिभुज का क्षेत्रफल है
त्रिभुज $PQR$ वृत्त $x^2$+$y^2$=$25$ से घिरा हुआ है। यदि $Q$ और $R$ के निर्देशांक क्रमशः $(3,4)$ और ;$(-4,3)$ हैं, तब $\angle \,QPR$ का मान है