वृत्तों ${x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ व ${x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ को लम्बवत् काटने वाले वृत्त के केन्द्र का बिन्दुपथ है
एक दीर्घवृत्त
दिये गये वृत्तों का मूलाक्ष
एक शांकव
दूसरा वृत्त
किसी त्रिभुज की तीन भुजाओं को व्यास मानकर खींचे गये वृत्तों का मूलकेन्द्र त्रिभुज का होगा
एक वृत्त ${x^2} + {y^2} + 2gx + c = 0$ के समाक्षीय निकाय में, जहाँ $g$ एक प्राचल है, यदि $c > 0$, तब वृत्त हैं
बिन्दु $(0, 0)$ तथा $(1, 0)$ से होकर जाने वाले तथा वृत्त ${x^2} + {y^2} = 9$ को स्पर्श करने वाले वृत्त का केन्द्र है
वृत्त ${x^2} + {y^2} + 2x + 8y - 23 = 0$ और ${x^2} + {y^2} - 4x - 10y + 9 = 0$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है
यदि $P$ और $Q$ वृत्त $x^{2}+y^{2}+3 x+7 y+2 p-5=0$ तथा $x^{2}+y^{2}+2 x+2 y-p^{2}=0$ के प्रतिच्छेद बिन्दु हैं तब $P, Q$ और $(1,1)$ से जाने वाला एक वृत्त है